3.3.20 \(\int \frac {\sqrt {1-a x}}{\sqrt {x}} \, dx\) [220]

Optimal. Leaf size=35 \[ \sqrt {x} \sqrt {1-a x}+\frac {\sin ^{-1}\left (\sqrt {a} \sqrt {x}\right )}{\sqrt {a}} \]

[Out]

arcsin(a^(1/2)*x^(1/2))/a^(1/2)+x^(1/2)*(-a*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {52, 56, 222} \begin {gather*} \frac {\text {ArcSin}\left (\sqrt {a} \sqrt {x}\right )}{\sqrt {a}}+\sqrt {x} \sqrt {1-a x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - a*x]/Sqrt[x],x]

[Out]

Sqrt[x]*Sqrt[1 - a*x] + ArcSin[Sqrt[a]*Sqrt[x]]/Sqrt[a]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 56

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int \frac {\sqrt {1-a x}}{\sqrt {x}} \, dx &=\sqrt {x} \sqrt {1-a x}+\frac {1}{2} \int \frac {1}{\sqrt {x} \sqrt {1-a x}} \, dx\\ &=\sqrt {x} \sqrt {1-a x}+\text {Subst}\left (\int \frac {1}{\sqrt {1-a x^2}} \, dx,x,\sqrt {x}\right )\\ &=\sqrt {x} \sqrt {1-a x}+\frac {\sin ^{-1}\left (\sqrt {a} \sqrt {x}\right )}{\sqrt {a}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 52, normalized size = 1.49 \begin {gather*} \sqrt {x} \sqrt {1-a x}+\frac {a \log \left (-\sqrt {-a} \sqrt {x}+\sqrt {1-a x}\right )}{(-a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - a*x]/Sqrt[x],x]

[Out]

Sqrt[x]*Sqrt[1 - a*x] + (a*Log[-(Sqrt[-a]*Sqrt[x]) + Sqrt[1 - a*x]])/(-a)^(3/2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(61\) vs. \(2(25)=50\).
time = 0.09, size = 62, normalized size = 1.77

method result size
meijerg \(\frac {\sqrt {-a}\, \left (-2 \sqrt {\pi }\, \sqrt {x}\, \sqrt {-a}\, \sqrt {-a x +1}-\frac {2 \sqrt {\pi }\, \sqrt {-a}\, \arcsin \left (\sqrt {a}\, \sqrt {x}\right )}{\sqrt {a}}\right )}{2 \sqrt {\pi }\, a}\) \(57\)
default \(\sqrt {x}\, \sqrt {-a x +1}+\frac {\sqrt {\left (-a x +1\right ) x}\, \arctan \left (\frac {\sqrt {a}\, \left (x -\frac {1}{2 a}\right )}{\sqrt {-a \,x^{2}+x}}\right )}{2 \sqrt {-a x +1}\, \sqrt {x}\, \sqrt {a}}\) \(62\)
risch \(-\frac {\sqrt {x}\, \left (a x -1\right ) \sqrt {\left (-a x +1\right ) x}}{\sqrt {-x \left (a x -1\right )}\, \sqrt {-a x +1}}+\frac {\sqrt {\left (-a x +1\right ) x}\, \arctan \left (\frac {\sqrt {a}\, \left (x -\frac {1}{2 a}\right )}{\sqrt {-a \,x^{2}+x}}\right )}{2 \sqrt {-a x +1}\, \sqrt {x}\, \sqrt {a}}\) \(88\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*x+1)^(1/2)/x^(1/2),x,method=_RETURNVERBOSE)

[Out]

x^(1/2)*(-a*x+1)^(1/2)+1/2*((-a*x+1)*x)^(1/2)/(-a*x+1)^(1/2)/x^(1/2)/a^(1/2)*arctan(a^(1/2)*(x-1/2/a)/(-a*x^2+
x)^(1/2))

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 48, normalized size = 1.37 \begin {gather*} -\frac {\arctan \left (\frac {\sqrt {-a x + 1}}{\sqrt {a} \sqrt {x}}\right )}{\sqrt {a}} + \frac {\sqrt {-a x + 1}}{{\left (a - \frac {a x - 1}{x}\right )} \sqrt {x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x+1)^(1/2)/x^(1/2),x, algorithm="maxima")

[Out]

-arctan(sqrt(-a*x + 1)/(sqrt(a)*sqrt(x)))/sqrt(a) + sqrt(-a*x + 1)/((a - (a*x - 1)/x)*sqrt(x))

________________________________________________________________________________________

Fricas [A]
time = 2.17, size = 92, normalized size = 2.63 \begin {gather*} \left [\frac {2 \, \sqrt {-a x + 1} a \sqrt {x} - \sqrt {-a} \log \left (-2 \, a x + 2 \, \sqrt {-a x + 1} \sqrt {-a} \sqrt {x} + 1\right )}{2 \, a}, \frac {\sqrt {-a x + 1} a \sqrt {x} - \sqrt {a} \arctan \left (\frac {\sqrt {-a x + 1}}{\sqrt {a} \sqrt {x}}\right )}{a}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x+1)^(1/2)/x^(1/2),x, algorithm="fricas")

[Out]

[1/2*(2*sqrt(-a*x + 1)*a*sqrt(x) - sqrt(-a)*log(-2*a*x + 2*sqrt(-a*x + 1)*sqrt(-a)*sqrt(x) + 1))/a, (sqrt(-a*x
 + 1)*a*sqrt(x) - sqrt(a)*arctan(sqrt(-a*x + 1)/(sqrt(a)*sqrt(x))))/a]

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.79, size = 82, normalized size = 2.34 \begin {gather*} \begin {cases} i \sqrt {x} \sqrt {a x - 1} - \frac {i \operatorname {acosh}{\left (\sqrt {a} \sqrt {x} \right )}}{\sqrt {a}} & \text {for}\: \left |{a x}\right | > 1 \\- \frac {a x^{\frac {3}{2}}}{\sqrt {- a x + 1}} + \frac {\sqrt {x}}{\sqrt {- a x + 1}} + \frac {\operatorname {asin}{\left (\sqrt {a} \sqrt {x} \right )}}{\sqrt {a}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x+1)**(1/2)/x**(1/2),x)

[Out]

Piecewise((I*sqrt(x)*sqrt(a*x - 1) - I*acosh(sqrt(a)*sqrt(x))/sqrt(a), Abs(a*x) > 1), (-a*x**(3/2)/sqrt(-a*x +
 1) + sqrt(x)/sqrt(-a*x + 1) + asin(sqrt(a)*sqrt(x))/sqrt(a), True))

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x+1)^(1/2)/x^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Warning, choosing root of [1,0,%%%{4,[1,
1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-4,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%
{-4,[1,2]%%%}+%%%{-16

________________________________________________________________________________________

Mupad [B]
time = 2.99, size = 38, normalized size = 1.09 \begin {gather*} \sqrt {x}\,\sqrt {1-a\,x}+\frac {2\,\mathrm {atan}\left (\frac {\sqrt {a}\,\sqrt {x}}{\sqrt {1-a\,x}-1}\right )}{\sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - a*x)^(1/2)/x^(1/2),x)

[Out]

x^(1/2)*(1 - a*x)^(1/2) + (2*atan((a^(1/2)*x^(1/2))/((1 - a*x)^(1/2) - 1)))/a^(1/2)

________________________________________________________________________________________